t2 <- read.csv('ban1.csv')
t2$datetime <- as.POSIXct(strptime(as.character(t2$datetime), "%a %Y.%m.%d %H:%M:%S"))
t2 <- t2[,c('datetime', 'wmagx', 'wmagy', 'wmagz')]
t2 <- cbind(t2, pos="ban1")
t3 <- read.csv('ban2.csv')
t3$datetime <- as.POSIXct(strptime(as.character(t3$datetime), "%a %Y.%m.%d %H:%M:%S"))
t3 <- t3[,c('datetime', 'wmagx', 'wmagy', 'wmagz')]
t3 <- cbind(t3, pos="ban2")
tt <- rbind(t1, t2, t3)
str(tt)
## 'data.frame': 391 obs. of 5 variables:
## $ datetime: POSIXct, format: "2016-04-21 15:32:44" "2016-04-21 15:32:46" ...
## $ wmagx : num 2.24e-07 2.98e-08 5.81e-07 3.43e-07 -3.28e-07 ...
## $ wmagy : num 35.4 35.5 35.6 35.7 35.8 ...
## $ wmagz : num -25.1 -24.6 -24.4 -24.2 -24 ...
## $ pos : Factor w/ 3 levels "xemay","ban1",..: 1 1 1 1 1 1 1 1 1 1 ...